Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 8006-8012, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37594260

RESUMO

The production of atomically dispersed metal catalysts remains a significant challenge in the field of heterogeneous catalysis due to coexistence with continuously packed sites such as nanoclusters and nanoparticles. This work presents a comprehensive guidance on how to increase the degree of atomization through a selection of appropriate experimental conditions and supports. It is based on a rigorous macro-kinetic theory that captures relevant competing processes of nucleation and formation of single atoms stabilized by point defects. The effects of metal-support interactions and deposition parameters on the resulting single atom to nanocluster ratio as well as the role of metal centers formed on point defects in the kinetics of nucleation have been established, thus paving the way to guided synthesis of single atom catalysts. The predictions are supported by experimental results on sputter deposition of Pt on exfoliated hexagonal boron nitride, as imaged by aberration-corrected scanning transmission electron microscopy.

2.
ACS Appl Nano Mater ; 5(2): 2075-2086, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35571534

RESUMO

A method of pore fabrication in the walls of carbon nanotubes has been developed, leading to porous nanotubes that have been filled with catalysts and utilized in liquid- and gas-phase reactions. Chromium oxide nanoparticles have been utilized as highly effective etchants of carbon nanotube sidewalls. Tuning the thermal profile and loading of this nanoscale oxidant, both of which influence the localized oxidation of the carbon, have allowed the controlled formation of defects and holes with openings of 40-60 nm, penetrating through several layers of the graphitic carbon nanotube sidewall, resulting in templated nanopore propagation. The porous carbon nanotubes have been demonstrated as catalytic nanoreactors, effectively stabilizing catalytic nanoparticles against agglomeration and modulating the reaction environment around active centers. CO2 sorption on ruthenium nanoparticles (RuNPs) inside nanoreactors led to distinctive surface-bound intermediates (such as carbonate species), compared to RuNPs on amorphous carbon. Introducing pores in nanoreactors modulates the strength of absorption of these intermediates, as they bond more strongly on RuNPs in porous nanoreactors as compared to the nanoreactors without pores. In the liquid-phase hydrosilylation of phenylacetylene, the confinement of Rh4(CO)12 catalyst centers within the porous nanoreactors changes the distribution of the products relative to those observed in the absence of the additional pores. These changes have been attributed to the enhanced local concentration of phenylacetylene and the environment in which the catalytic centers reside within the porous carbon host.

3.
Chemistry ; 26(29): 6670-6678, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32045041

RESUMO

The preparation of 2D stacked layers combining flakes of different nature gives rise to countless numbers of heterostructures where new band alignments, defined at the interfaces, control the electronic properties of the system. Among the large family of 2D/2D heterostructures, the one formed by the combination of the most common semiconducting transition metal dichalcogenides, WS2 /MoS2 , has awakened great interest owing to its photovoltaic and photoelectrochemical properties. Solution as well as dry physical methods have been developed to optimize the synthesis of these heterostructures. Here, a suspension of negatively charged MoS2 flakes is mixed with a methanolic solution of a cationic W3 S4 -core cluster, giving rise to a homogeneous distribution of the clusters over the layers. In a second step, a calcination of this molecular/2D heterostructure under N2 leads to the formation of clean WS2 /MoS2 heterostructures, where the photoluminescence of both counterparts is quenched, proving an efficient interlayer coupling. Thus, this chemical method combines the advantages of a solution approach (simple, scalable, and low-cost) with the good quality interfaces reached by using more complicated traditional physical methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...